Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Chun-Hua Diao,* Min-Jie Guo, Ming Yu, Xin Chen and Zuo-Liang Jing

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail:
diao_chunhua@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.178$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

4-[6-(4-Formyl-2-methoxyphenoxy)hexyloxy]-3-methoxybenzaldehyde

The title compound, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$, was prepared by the reaction of 4-hydroxy-3-methoxybenzaldehyde and 1,6-dibromohexane, displays molecular symmetry C_{i}, and has a crystallographic centre of inversion located at the mid-point of the $\mathrm{C}-\mathrm{C}$ bond of the aliphatic chain. The zigzag aliphatic chain is coplanar with the aromatic rings of the vanillin groups.

Comment

Since the first syntheses of macrocyclic crown ethers that are capable of forming stable and selective complexes with alkali and alkaline earth metal ions were performed by Pedersen (1967), a number of studies have been made to understand the factors that control the thermodynamic and kinetic stability and selectivity of the resulting complexes (Kim et al., 1999). We are interested in the molecular and ionic recognition of crown ethers. As part of this study, we report the synthesis and structure of the title compound, (I). A view of the molecule is shown in Fig. 1. A crystallographic centre of symmetry is located at the mid-point of the $\mathrm{C} 11-\mathrm{C} 11^{i}$ bond [symmetry code: (i) $-x,-y,-z]$. Each vanillin group $(\mathrm{C} 1-\mathrm{C} 8 / \mathrm{O} 1 / \mathrm{O} 2)$ is planar, with an r.m.s. deviation for fitted atoms of $0.028 \AA$. The chain of atoms $\mathrm{C} 9-\mathrm{C} 11 / \mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 9^{\mathrm{i}}$ linking the two vanillin systems is planar, with an r.m.s. deviation for fitted atoms of $0.003 \AA$. The $\mathrm{C} 6-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$ torsion angle is $177.3(2)^{\circ}$, confirming the coplanarity of the aliphatic and aromatic groups. The geometry is similar to that in 4-[4-(4-formyl-2-methoxyphenoxy)butoxy]-3-methoxybenzaldehyde (Duan et al., 2005). However, the dihedral angle between the plane (C9-C11/C11 ${ }^{\mathrm{i}}-\mathrm{C} 9^{\mathrm{i}}$) and the vanillin plane is $3.0(3)^{\circ}$, in contrast to the value of 5.2 (2) ${ }^{\circ}$ in 4-[4-(4-formyl-2-methoxy-phenoxy)butoxy]-3-methoxybenzaldehyde.

Received 26 September 2005
Accepted 10 October 2005
Online 15 October 2005

Experimental

To a solution of 4-hydroxy-3-methoxybenzaldehyde (15.2 g , 10 mmol) and potassium carbonate ($13.8 \mathrm{~g}, 10 \mathrm{mmol}$) in acetonitrile (500 ml), 1,6-dibromohexane ($12.2 \mathrm{~g}, 5 \mathrm{mmol}$) was added over a period of 30 min , and the mixture was refluxed for 24 h under nitrogen. The solvent was removed and the resulting oil was poured into ice-water $(500 \mathrm{ml})$. The white precipitate was isolated and recrystallized from ethanol to give a pure compound in 54% yield.

Figure 1
The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level. [Symmetry code: (I) $-x,-y,-z$.]

Colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$
$M_{r}=386.43$
Monoclinic, $P P_{2} / c$
$a=9.588(2) \AA$
$b=7.8313(17) \AA$
$c=13.721(3) \AA$
$\beta=91.311(4)^{\circ}$
$V=1030.0(4) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.246 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 1658
reflections
$\theta=3.0-26.1^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, colourless
$0.40 \times 0.36 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.962, T_{\text {max }}=0.982$
5586 measured reflections

Figure 2
A view, down the c axis, of the packing arrangement in the crystal structure of (I). H atoms have been omitted.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SMART (Version 5.0 for Windows NT), SAINT (Version 4.0 for Windows NT) and SHELXTL (Version 5.10 for Windows NT). Bruker AXS Inc., Madison, Wisconsin, USA.
Duan, Z.-Y. \& Zhang, W.-J. (2005). Acta Cryst. E61, o3355-o3356.
Kim, J., Shamsipur, M., Huang, S. Z., Huang, R. H. \& Dye, J. L. (1999). J. Phys. Chem. A, 103, 5615-5620.
Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography

